# RAILROADS AND THE ENVIRONMENT: ESTIMATION OF FUEL CONSUMPTION IN RAIL TRANSPORTATION <br> Volume II - Freight Service Measurements 

John B. Hopkins<br>A. T. Newfell<br>U.S. Department of Transportation Transportation Systems Center<br>Kendall Square<br>Cambridge MA 02142



SEPTEMBER 1977

FINAL REPORT

DOCUMENT IS AVAILABLE TO THE U.S. PUBLIC
THROUGH THE NATIONAL TECHNICAL
INFORMATION SERVICE, SPRINGFIELD,
VIRGINIA 22161

Prepared for
U.S. DEPARTMENT OF TRANSPORTATION

FEDERAL RAILROAD ADMINISTRATION
Office of Research and Development Washington DC 20590

REPRODUCED BY
U.S. DEPARTMENT OF COMMERCE

NATIONAL TECHNICAL
INFORMATION SERVICE
SPRINGFIELD, VA 22161

## NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

## NOTICE

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.

Technical Report Documentation Page

| 1. Report No. FRA-OR\&D-75-74.II | 2. Govermment Accession No. | 3. Recipient's Coralog No. |
| :---: | :---: | :---: |
| 4. Title ond Subtifle <br> RAILROADS AND THE ENVIRONMENT: <br> ESTIMATION OF FUEL CONSUMPTION IN RAIL TRANSPORTATION <br> Volume II-Freight Service Measurements |  | 5. Report Date September 1977 |
|  |  | 6. Performing Organi zation Code |
|  |  |  |
| 7. Author's) ${ }^{\text {John }}$ B. Hopkins and A.T. Newfell |  | DOT-TSC-FRA-77-11 |
| 9. Performing Organization Name and Address <br> U.S. Department of Transportation Transportation Systems Center Kendall Square <br> Cambridge MA 02142 |  | 10. Work Unit No. (TRAIS) |
|  |  |  |
|  |  | T1. Contract or Grant No. |
|  |  |  |
|  |  | 13. Type of Report and Period Covered |
| 12. Sponsoring Agency Name and Address |  | Final Report |
| U.S. Department of Transportation Federal Railroad Administration |  | October 1974 - May 1977 |
|  |  |  |
| Federal Railroad Administration Office of Research and Development |  | 14. Sponsoring Agency Code |

15. Supplementary Notes
16. Abstract

Fuel consumption measurments have been carried out in cooperation with several railroads for a variety of types of revenue freight service. Intermodal operations have been emphasized, but this report also includes studies relating to branchline and general freight movements. The wide range of operating parameters examined includes train speed, weight, length, type, power-to-weight ratio, and terrain. In particular, this report describes the test conditions, operating parameters and fuel usage indices for 80 separate line-haul movements on six different railroads, covering 53,000 train miles. Trailer-On-Flatcar (TOFC) service predominates, but several manifest freights, two unit coal trains, and two COFC trains are included. Branchline service is also reported and analysed for six $174-\mathrm{mile}$ round trips. In spite of considerable variation in relevant parameters and inherent imprecision in the data, the results are found to exhibit a basic consistency both internally and with past estimates.


## PREFACE

The research described in this report was carried out in the context of an overall project at the Federal Railroad Administration (FRA) to provide a technical basis for the improvement of rail transportation service, efficiency, and productivity. This project was sponsored and directed by the Office of Research and Development, Office of Freight Systems.

Volume I in this series (Report No. FRA-OR¢D-75-74.I) applied a simplified physical model to a variety of rail transportation services, with the primary objectives of estimating sensitivity of fuel consumption to operating and equipment parameters. This document, Volume II, reports measured fuel usage for a wide range of freight trains. Volume III will present a comparison of these experimental measurements to computer simulations based upon the model of Volume I.
A. T. Newfell of the Transportation Systems Center (TSC) has had full responsibility for arranging and coordinating all railroad fue1 measurements, and participated in many of the tests. J. Hopkins, also of TSC, had overall responsibility for direction of the project and for analysis and documentation of the results. Computer simulation work related to this project has been the responsibility of M. Hazel (TSC). The cooperation of several railroads, and particularly the effort of numerous individuals, is greatly appreciated. A partial listing of some of those people and railroads who have been especially helpful includes: C. A. Menne11, T. Wa11, and T. Schmidt of the Missouri Pacific Railroad Company; J. Hillard, A. Schuck, and D. Propp of the Burlington Northern; W. O'Neill, R. Austill, and A. G. Newell of the Southern Pacific; J. Angold and D. Long of the Santa Fe Railway Company; D. Catalan, H. Patterson, and E. Rhine of the Union Pacific; W. Bolla and J. Lehman of the Illinois Central Gulf Railroad; and S. Culliford, A. McAdam, and D. Taylor of the Boston \& Maine Corporation.
metric conversion factors






## TABLE OF CONTENTS

Section Page

1. INTRODUCTION ..... 1
1.1 Objective ..... 1
1.2 Approach ..... 3
1.3 Constraints ..... 4
2. MEASUREMENTS AND RESULTS ..... 6
2.1 Branch1ine Operations (Missouri Pacific) ..... 6
2.2 Lone-Distance TOFC (Burlington Northern) ..... 8
2.3 Detailed Measurements for Various Consists (Southern Pacific) ..... 13
2.4 Long-Distance Detailed Measurements (Santa FE). ..... 15
2.5 Long-Distance Tests (I11inois Central Gulf) ..... 21
2.6 Long-Distance Tests (Union Pacific) ..... 25
2.7 Unit Coal Train Operations ..... 25
2.8 Summary of Intermodal Results ..... 29
2.9 Comparison with Computer Simulations ..... 33
3. SUMMARY AND CONCLUSIONS ..... 35

## LIST OF ILLUSTRATIONS

Figure Page

1. Branch1ine Fue1 Efficiency (Based on Data as Measured) ..... 9
2. Branchline Fuel Efficiency (Measured Data Adjusted in Accordance with Assumed Meter Errors) ..... 10
3. ATSF Test Car (Exterior View) ..... 18
4. ATSF Test Car (Interior View) ..... 19
5. Mounted Fuel Meter ..... 20
LIST OF TABLES
Table Page
6. MISSOURI PACIFIC FUEL MEASUREMENTS (BRANCHLINE SERVICE) ..... 7
7. BURLINGTON NORTHERN FUEL CONSUMPTION MEASUREMENTS, FIRST SERIES ..... 12
8. BURLINGTON NORTHERN FUEL CONSUMPTION MEASUREMENTS, SECOND SERIES ..... 14
9. SOUTHERN PACIFIC TEST RUNS ..... 16
10. SOUTHERN PACIFIC FUEL CONSUMPTION MEASUREMENTS ..... 17
11. ATCHISON, TOPEKA AND SANTA FE TEST RUNS ..... 22
12. ATCHISON, TOPEKA AND SANTA FE FUEL CONSUMPTION MEASUREMENTS ..... 23
13. ILLINOIS CENTRAL GULF TEST RUNS ..... 24
14. ILLINOIS CENTRAL GULF FUEL CONSUMPTION MEASUREMENTS (TOFC ONLY) ..... 26
15. ILLINOIS CENTRAL GULF FUEL CONSUMPTION MEASUREMENTS (ALL EXCEPT TOFC) ..... 27
16. UNION PACIFIC FUEL CONSUMPTION MEASUREMENTS ..... 28

## LIST OF TABLES (CONTINUED)

Table Page
12. UNIT COAL TRAIN FUEL CONSUMPTION MEASUREMENTS (BURLINGTON NORTHERN AND BOSTON G MAINE) ..... 30
13. SUMMARY OF TOFC FUEL CONSUMPTION MEASUREMENTS........ ..... 31
14. SUMMARY OF COFC FUEL CONSUMPTION MEASUREMENTS. ..... 32
15. SUMMARY OF FUEL CONSUMPTION MEASUREMENTS. ..... 36

## 1. INTRODUCTION

### 1.1 OBJECTIVE

In recent years, the subject of fuel consumption in rail transportation of freight has received considerable attention. As fuel oil has changed from a relatively minor cost of train operation to an expensive and limited resource, railroads and Government alike have become increasingly interested in the characterization and improvement of railroad fuel efficiency. In the other major general freight mode, namely the highways, there is a basic consistency to operations - roads, vehicles, and speeds vary sufficiently little that it can be meaningful for many purposes to characterize energy efficiency of the mode by a single number. However, different railroad operations may be carried out at running speeds from less than 20 to greater than 70 mph , with power-to-weight ratios ranging from less than one HP/ton to five or more. The rolling stock - gondolas, box cars, auto-rack cars, Trailer-On-Flatcar (TOFC), Container-On-Flatcar (COFC), tank cars, hopper cars (covered or uncovered), etc., can vary greatly in aerodynamic drag and net/tare weight ratios.

Thus, it can be both futile and erroneous to attempt to develop a single number to characterize the fuel or energy intensiveness of railroad transportation of freight. An average value, no matter how achieved, can be highly misleading if applied to a specific case differing in some crucial factor. Even for relatively general policy purposes it is necessary to have fuel efficiency values for each of several "typical" and extreme cases. Indeed, this need alone warrants a meaningful effort to determine fuel consumption under various circumstances, and represents one major objective of the research described here.

Often, however, it is desirable to be able to make relatively specific decisions concerning policy, operating procedure, or even mode choice. Such questions can arise for transportation companies, shippers, and governmental bodies. In these cases,
it becomes important to have available the capability to estimate fuel usage with reasonable accuracy for a variety of scenarios. The development of appropriate computer models and "Train Performance Calculators" (TPC's) has been a common solution to this type of situation. These simulations can be relatively elaborate and are inherently based upon a small number of rather old measurements of train resistance (the force required to pull a train under given circumstances) and normally include a number of important simplifying assumptions. Typical railroad uses of TPC's include examination of the sensitivity to various operational changes of train running time and fuel necessary in cases where high precision in absolute numbers is usually not required. Although users generally indicate that the results are satisfactory for their purposes, few attempts have been made or published which actually establish the accuracy of current TPC's. For this reason, it has been judged appropriate that the U.S. Department of Transportation undertake to obtain actual fuel consumption data under sufficiently realistic and well-defined circumstances to permit calibration and validation of Government (and other) computer simulations. Only then can a wide variety of questions be answered readily and simply without recourse to large specific studies or dependence upon educated guesses. This, then, has been a second major goal of the work to be described here.

The third objective of this research has been a better characterization of fuel efficiency in TOFC and COFC operations. This has been an area in which there has been considerable controversy, and which bears upon significant policy decisions. In particular, an attempt has been made to supply the basic information required to support FRA intermodal systems engineering efforts.

### 1.2 APPROACH

In order that these objectives be met, accurate and well documented measurements of locomotive fuel consumption are necessary under a variety of circumstances. For this information to be valid and credible, it must be obtained during actual revenue operations of railroads. Since the business of a railroad is moving freight, rather than conducting fuel measurements, this activity has required securing the active cooperation of railroads and developing test plans which were compatible with their normal practices and operations. Given the number of parameters which must be known or controlled, this has been a complex undertaking, and in different cases has been achieved in a variety of ways, at several different levels of detail. In essence, it has been necessary to depend to a large degree upon "targets of opportunity" operations in which consists, routes, fueling procedures, speeds, test equipment, and interest on the part of the railroad have been suitable to the generation of data meeting the stated needs.

Ideally, for meaningful generalization as well as for calibration and validation of simulations, detailed data is required. This falls into three categories: train, route, and operating scenario. Information concerning the train includes number and type of locomotives (weight, power, etc.), and number, type, and weight of cars. Route information is basically track data: curvature and grade. Necessary details of the operation include speed, time, and fuel consumed (all recorded frequently), and information on stops, wind, etc. Collection of this much data is complex and expensive, and requires in-motion scales for weighing the train, fuel meters on the locomotives, and a well-instrumented test car, with a cooperative and interested crew, as part of the train consist.

In practice, this degree of precision is quite expensive and often not attainable. However, much can be learned from less comprehensive data. For example, a standard and readily attainable computer-generated consist list, the actual operating
schedule, and the total fuel pumped into the locomotive can provide meaningfu1, if imprecise, estimates of the overall fuel efficiency in various operations. Since this approach is relatively inexpensive, it may be possible to make numerous runs of this type, thereby developing averages in which one can have confidence.

A variety of cases occurred in the measurement project in which the detail, accuracy, and quantity of the data collected lie between these extremes. Although the special need in this project was for TOFC/COFC data, it has also proven feasible to obtain data for several other categories of general freight, unit coal trains, and light-traffic branchline operations. Tests that have been carried out incorporate considerable variety in terrain, speeds, consists and power-to-weight ratios.

### 1.3 CONSTRAINTS

The experimental findings and analysis to be described below must be viewed from a realistic perspective. In general, it is seldom possible to collect data sufficient in quantity and accuracy to generate truly precise characterization of railfreight transportation energy intensiveness in a specific situation. Weighing of cars is time-consuming and often not possible. Determination of net weights requires detailed examination of a large number of bills of lading. Changes in consist, whether planned or the result of mechanical problems, can also be difficult to record precisely in normal operations and very tedious to analyse. (This is particularly true of TOFC/COFC operations, in which one must also obtain records concerning the weight and contents of the trailer or container.)

A variety of practical factors make high accuracy in fuel measurement attainable only through installation of flow meters on each locomotive, and it is normally difficult and expensive to keep a group of metered locomotives together for a sequence of tests. Further, diesel engines are designed such that a fuel pump suppiies fuel to the engine at a constant rate, regardless
of throttle setting, and all fuel not consumed is returned to the tank. Thus, measurement of fuel consumption requires installation of meters in both the supply and the return lines, with data recorded for each. At low throttle settings, one is faced with measuring a small difference between two relatively large numbers, so that meter inaccuracies can have disproportionate effect. One possible source of errors of this type is the heating of the oil as it passes through the engine, changing its volume.

Fuel can vary significantly in energy content, which can be determined accurately only through laboratory analysis. Changes in barometric pressure and temperature can also affect the efficiency of combustion. Accurate recording of speed variations, including all stops and slowdowns, is labor-intensive in collection and/or analysis, but necessary to any attempt to associate fuel consumption with velocity (large variations in speed are characteristic of most rail operations). At higher speeds, for which aerodynamic forces become particularly significant, winds can be especially important, but are difficult to monitor, and may vary markedly over the length of a train or a particular run.

Even if all these and several other parameters can be determined with high precision, and one succeeds in the exact characterization of a specific train movement, there remains the problem of generalization. Some scheduled trains vary little from day to day, such as in expedited TOFC or unit train service, but the more common case includes substantial differences in weather, delays, switching, track conditions, power-to-weight ratio, etc., as well as the effects of the train-handling practices of different engineers.

## 2. MEASUREMENTS AND RESULTS

### 2.1 BRANCHLINE OPERATIONS (MISSOURI PACIFIC)

During November, 1974, measurements were carried out by the Missouri Pacific Railroad on a branch line between Mcgehee, Arkansas and Delhi, Louisiana, a distance of 87 miles. Speeds over different portions of the basically level run were generally eigher 10 MPH or 25 MPH , with consists ranging from 0 to 38 cars, and a single locomotive. Fuel metering devices were installed in the input and return fuel lines of the EMD GP-7 normally assigned to this run. For a period of two weeks (six round trips), the train crew was accompanied by a Missouri Pacific (MoPac) staff engineer, who periodically noted fuel meter readings, time of day, consist, and type of movement. The consist list for the runs, track charts, and speed recorder tapes provided additional information.

The consist lists were examined to determine average weights (estimated by MoPac) for empty and loaded cars for each day. Empty and loaded car miles could then be converted to gross and net ton miles for three segments of the routes, comprised of sections for which speeds and train make-up were relatively constant. With fuel consumption and ton-miles known, it is a simple matter to calculate various indices of efficiency. Results of this test series are shown in Table 1 , based upon data corrected as described below. Only fuel consumed in running and switching is considered in that table; idling is excluded. For the six round trips in this test, approximately 40 percent of the fuel consumed was associated with idling and 15 percent with switching activities; only 45 percent was required for moving the train between stopping points.

The fuel rate at idle as measured was found to be rather high (approximately 10 gallons/hour for a 1600 HP locomotive), suggesting that meter inaccuracies could be contributors (as mentioned in the previous section) to overstated fuel usage. Thus, "adjusted" calculations were also made, under the assumption of $a+1$ percent





error on the input meter and -1 percent for the return line. This correction reduced the measured fuel rate at idle to a more reasonable 5 gal/hour. Results are plotted in Figures 1 and 2 for both "raw" and "adjusted" data respectively. These graphs are based on running fuel only. Differences become small for the larger trains since the assumed error mechanism is important only at low fuel rates. Although a number of uncertainties existed in the test situation which lead to considerable scatter in the data, a basic consistancy is observed in shape of the curves. It is to be noted that it is only in the range below 400-500 gross tons that there is significant variation from the general linehaul situation. This is quite reasonable theoretically; for the longer trains the weight of the caboose and locomotive(s) becomes a less significant portion of total weight, and the power consumed by locomotive accessories (about 100 HP ) becomes small in comparison with that required to overcome train resistance.

### 2.2 LONG-DISTANCE TOFC (BURLINGTON NORTHERN)

In June 1975, the Burlington Northern Railroad collected a variety of information relating to fuel usage on a scheduled TOFC train operating daily between Chicago and Seattle. This train normally carried a number of cars the full distance, with other cars being set out and picked up at St. Paul, Fargo, Minot, Havre, and Spokane. Its scheduled running time was 49 hours, 15 minutes, for the 2200 mile trip. With the exception of an occasional mail car, it was purely TOFC, with almost all trailers loaded. No empty cars were hauled.

The data obtained included computer-generated consist lists (including estimated car weights) for departure from each major terminal area; the conductor's log sheet, showing arrival and departure times, consist, and delay reports; tapes from on-board speed recorders; and total fuel added at Minot and Seattle. The trains left Chicago with full tanks, and fuel was added only at those two points, at which accurate metering was available. Condensed track profiles were provided for the entire route. On several occasions, power changes or other circumstances limited the test to the Chicago-Minot portion.


FIGURE 2. BRANCHLINE FUEL EFFICIENCY (MEASURED DATA ADJUSTED IN ACCORDANCE WITH ASSUMED

The data from these runs were analyzed by subdivision into sections chosen to accomodate all significant consist changes, with calculation of average running speeds and train weight and size for each segment. The typical consist was three locomotives (generally $3600 \mathrm{HP} \mathrm{SD}-45^{\prime} \mathrm{s}$ ) and 15 to 40 trailer-carrying flatcars, yielding gross trailing weights of 1100 to 2800 tons, and power-toweight ratios of 4 to $10 \mathrm{HP} / \mathrm{ton}$. The TTX cars normally carried either two loaded trailers or one loaded trailer. Data were provided for a total of 13 Chicago-Minot runs (922 miles), and in 6 cases for the 1257-mile continuation to Seattle. Characteristics and results of these runs are presented in Table 2. Since minor changes in consist occurred in the course of the two runs, the listed number of cars is an average (mileage-weighted) value. These trains operated at 50 to 60 MPH and delivered an overall average of 425 gross-trailing-ton-miles per gallon. The speeds indicated in Table 2 are a point-to-point average, with known stops excluded. The car weights provided were the values carried in the BN computer for each car type, since actual weighing was not possible. These figures were judged by railroad personnel to have an uncertainity of about 10 percent. Net weights are estimated based upon the assumption of 15 tons per loaded trailer, 50 tons per box car; these values are consistent with findings in other tests, but could be significantly in error in any given situation.

For pure TOFC operations, a useful index can be calculated even without accurate weights. From the consist lists it is possible to determine the number of trailers carried. Similarly, the fuel figures may be considered to be accurate to within a few percent. Thus, one can readily determine the "trailer-miles per gallon" with good accuracy. This quantity is the one appropriate to comparison with highway movement of trailers, for which it is equivalent to truck miles per gallon (for single-trailer operations). The overall average for these runs was 10.2 trailer-miles per gallon, with virtually all trailers loaded. It should be noted that the average load carried may not be the same for the rail and highway cases.
MASURED FUEL CCNEUMPTICN DAIA YOE: TOFC
INCLUEES TEST CAR, IF PEESENT, AND CAECCSE
"GGOSS TRAILING": "HY/TCN" $=$ "HCRSEECNER PE
$E$
0
$E$



 3岂或




- 9 - 2
AVA. TCN-MI/GAL $=$ TOTAL TON-MI/TCTAL GALLONS; SAPE FCR TR-MI/GAL
OTHBR AVERAGES NOT WFIGHTED

Information concerning eight further runs was provided in early 1976. At this time, operations had changed so that only Chicago-Minot data could be reported, and the train typically consisted of 5 to 15 box cars in addition to the TTX cars. These results are also presented in Table 3; the overall fuel usage was close to that for the previous case, 442 gross-trailing-ton-miles per gallon.
2.3 DETAILED MEASUREMENTS FOR VARIOUS CONSISTS (SOUTHERN PACIFIC)

During July 1975, the Southern Pacific Transportation Company collected detailed data concerning operational and fuel consumption characteristics for eight trains (four in each direction) running between Roseville and Bakersfie1d, California, a distance of 287 miles. The terrain - the Great Central Valley of California - is relatively flat. On most trips, several stops occurred at which minor changes in consist were carried out. All trains were weighed at Stockton, California, on in-motion scales, and the weights recorded. The power consist was unchanged for the eight runs, and comprised two SD-45 locomotives and a dynamometer test-car housing the test crew and measurement apparatus. Fuel consumption was determined with calibrated meters connected from the test car to each of the diesel units. Prior to testing, both locomotives were checked thoroughly to insure that they were in proper operating condition, and the meters were calibrated.

The basic test procedure consisted of recording distance traveled, milepost, fuel consumed, speed, time, and other factors at 10 mile intervals, as well as at stops or otherwise noteworthy points. The measured gross weights of the cars were subsequently added manually to computer-generated consist lists, and equipmentregister car empty weights were subtracted to obtain net weights. All consist changes were carefully noted.

Three types of trains were involved. Two runs consisted of TOFC only (from 29 to 47 cars), carrying loaded trailers predominantly. These relatively light trains ( 2200 to 3600 tons) operated at power-to-weight ratios of 2 to 3 HP per gross trailing
AASUKED PUEL CCNGUMPTICN DATA
CONSIST TYPE: ALL
LLE
ISE
TON ${ }^{n}$

TCA-MI/GAL

$\underset{i}{*}$




1694
795
636
1313
1622
1631
1544
1580
940
1625
1338


IVG. TCN-MI/GAL $=$ TOTAL TON-MI/TOTAL GALLONS
JRHER AVERAGES NOI WEIGHTED
ton, with speed often in the range of 50 to 60 MPH or higher. Four other runs involved heavy mixed-freight trains - two of over 10,000 tons, and two of 5000-6000 tons, operating at . 7 to 1.4 HP per gross trailing ton, and moving at relatively low speeds. The remaining two runs were intermediate cases - about 30 TTX cars, mostly loaded, combined with 34 to 48 loaded freight cars. For analysis the four round trips were divided into the 13 segments listed in Table 4, based on uniformity of consists. Results are presented in Table 5.

The TOFC-only service, with an average of 37.5 TTX cars carrying 53.7 loaded trailers, delivered 13.2 trailer-miles per gallon, with most of the trailers loaded. The figure for net-ton-miles per gallon was 181, with a gross figure of 599, substantially higher than that for the Burlington Northern tests. (The BN runs were partially on mountainous terrain, and involved significantly higher ratios of power-to-weight.) The heavy general-freight trains moved at an average of 449 net-ton-miles per gallon (956 gross-trailing- ton-miles per gallon), and the mixed-consist trains showed 206 net, 672 gross.

### 2.4 LONG-DISTANCE DETAILED MEASUREMENTS (SANTA FE)

In the first half of 1976, the Santa Fe Railway Company carried out detailed measurements during three round-trips between Kansas City, Kansas and Los Angeles or Barstow, California. These tests, included two TOFC trains and one consisting primarily of box cars, hauled by either 3 or 4 SD-45 locomotives. Average speeds overall were in the range of $45-50 \mathrm{MPH}$, with running speeds for the TOFC trains reaching 70 MPH . A test car, located behind the power consist, was always used, equipped with a variety of instruments and data processing and recording equipment. (See Figures 3, 4 and 5.) Speed, distance, throttle setting (notch), and fuel consumption for each locomotive were recorded on magnetic tape, as were wind velocity and direction (relative to the test car). Consist changes were few, typically involving removal of bad-order cars. The first TOFC train was allowed 70 MPH whenever speed limits permitted; the second was allowed to "drift" to 70


טノ哈合

 जnInNTNMMONOMMNN $\mathrm{N} \infty+\mathrm{mmo}$

 29
20
0.0

TABLE 5. SOUTHERN PACIFIC FUEL CONSUMPTION MEASUREMENTS
MEASURED FUEL CONSUMPTION DATA
CAR TOTAL INCLUDES TEST CAR, IP PRESEMT, AND CABCCSE
CAR TOTAL INCLUDES TEST CAR, IP PRESEBT, AND CABCCSE
"GR TR" $=$ "GROSS TRAILING"; "HP/TCN" $=$ HORSEPONER PER GROSS TRAILING TOM*


(EXTERIOR VIEW)
ATSF TEST CAR
FIGURE 3.


FIGURE 4. ATSF TEST CAR (INTERIOR VIEW)

Figure 5. MOUNTED FUEL METER
on downgrades (with locomotives at idle), but could apply power on1y up to 55 MPH . For this analysis the round trips are broken into separate segments, as indicated in Tab1e 6. The Kansas City - Clovis element is relatively level, with a moderate continuallyascending grade, rising from an elevation of 768 feet to 4262. West of Clovis, several mountain ranges are crossed, with substantial and sometimes very lengthy grades (both ascending and descending); the maximum elevation on the run is 7350 feet. Results of data taken on these runs are displayed in Table 7. The westbound TOFC trains generally carried a full complement of loaded trailers; when eastbound, the trailers were predominantly empty. All trains were weighed on in-motion scales, with net values based upon manual subtraction of bill-of-lading weights. For the TOFC trains, the overall average energy intensity was 439 gross-trailing-ton-miles per gallon, or 13.3 trailer-miles per gallon. (The GTTM/gal figure is seen to be very close to that obtained in the BN tests, for similar power/weight and terrain.)

### 2.5 LONG-DISTANCE TESTS (ILLINOIS CENTRAL GULF)

In 1976, 13 runs were carried out by the Iliinois Central Gulf Railroad involving routes between Chicago and New Orleans and from Omaha to Chicago. There were 7 TOFC, 2 COFC, and 5 manifest freight trains; segments, train type, and route are indicated in Table 8. Several locomotive types were involved, with GP-40's ( 3000 HP ) and GP-38-2's ( 2000 HP ) predominating. In this case no test car was used, but a strip chart recorder in the lead locomotive accumulated data concerning speed and throttle notch; fuel meters on each locomotive were read at several points during the run. Relatively numerous consist changes occurred, not always fully documented, so that mileage-weighted averages are used for the car and weight values in Table 8; several runs will be seen to have been divided into segments, sometimes fairly short, for this reason. It was not possible to record the time associated with various stops and delays, particularly at intermediate terminals, so the average speeds 1 isted are presumably substantially lower than typical running speeds. Weighing of the


| $\begin{aligned} & \text { U } \\ & \underset{\sim}{Z} \\ & 0 \end{aligned}$ |  |  の0 0 0 in 00 oing $\ddagger$ mmmmmmNNざコココ |
| :---: | :---: | :---: |
|  | H |  |
| $z$ | ${ }^{3}$ |  |
| O | Un |  |
| E | \％ |  |
| O | OE－ |  |
| $\Sigma$ | $\cup$ |  |
| $\square$ |  |  |
| z |  |  |
| O | （151 | manvonmmNNNN |
| U | $\sim$ |  |
| $\cdots$ | $\underset{\sim}{0}$ |  |
| 0 |  |  |
| $\bigcirc$ | $\cdots$ |  |
| 出 |  |  |
| 吅 |  |  |
| 0 |  | －NMホーNMホーNMき |
| ＊ |  | －－1－NNNへmmm |
| a | $\omega$ |  |
|  | 20 |  |
| $\pm$ | $\sim 0$ |  |
|  |  |  |
| $0$ |  | －＜¢ ¢ ¢＜ |


|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CAR total includes test car, if present. and cabocse |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| "GR TR" $=$ "GROSS TRAILIRG"; "HP/TCN" $=$ "HORSEPOWRR PER GROSS TRAILING TOX" |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\begin{aligned} & \text { RUN } \\ & \text { CODE } \end{aligned}$ |  | HP | $\mathrm{BOX}^{\mathrm{MR}}$ | of Cars |  | NR OF TRLRS | WEIGHT |  | $\begin{aligned} & \text { HP/ } \\ & \text { TON } \end{aligned}$ | $\begin{aligned} & \text { DIST } \\ & \text { (MI) } \end{aligned}$ | $\begin{aligned} & \text { AVG. } \\ & \text { SPEED } \end{aligned}$ | $\begin{aligned} & \text { FUEL } \\ & \text { (GAL) } \end{aligned}$ | TON-HI/GAL |  | $\begin{gathered} \text { CONSIST } \\ \text { TYPE } \end{gathered}$ |
|  |  | TTX |  | total | GR TR |  | HET | GR TR |  |  |  |  | NBT |  |
| AtSp | 1-1 |  | 14400 | 0 | 55 | 57 | 100 | 3997 | 1316 | 3.6 | 635 | 46.8 | 6455 | 393 | 129 | TCPC |
| ATSF | 1-2 | 14400 | 0 | 49 | 51 | 93 | 3693 | 1206 | 3.9 | 973 | 43.9 | 8879 | 405 | 132 | TOPC |
| ATSP | 1-3 | 14400 | 0 | 62 | 64 | 119 | 3634 | 672 | 4.0 | 1116 | 46.5 | 10763 | 377 | 70 | TOPC |
| ATSP | 1-4 | 14400 | 0 | 62 | 64 | 119 | 3634 | 672 | 4.0 | 632 | 43.7 | 4593 | 500 | 92 | TOPC |
| ATSF | 2-1 | 10800 | 0 | 47 | 49 | 90 | 3563 | 1247 | 3.0 | 633 | 40.5 | 3994 | 565 | 198 | tope |
| ATSP | 2-2 | 10800 | 0 | 47 | 49 | 91 | 3616 | 1269 | 3.0 | 1115 | 42.0 | 7378 | 546 | 192 | TCPC |
| ATSP | 2-3 | 10800 | 0 | 56 | 58 | 109 | 2640 | 0 | 4.1 | 1116 | 39.1 | 8255 | 357 | 0 | TOPC |
| ATSP | 2-4 | 10800 | 0 | 56 | 58 | 109 | 2640 | 0 | 4.1 | 633 | 43.3 | 2986 | 559 | 0 | TCPC |
| ATSP | 3-1 | 14400 | 62 | 0 | 64 | 0 | 4530 | 1815 | 3.2 | 634 | 44.4 | 5933 | 484 | 194 | BCX |
| atsp | 3-2 | 14400 | 61 | 0 | 63 | 0 | 4450 | 1753 | 3.2 | 1113 | 45.7 | 9928 | 499 | 197 | BCX |
| AtSp | 3-3 | 14400 | 37 | 30 | 69 | 60 | 4462 | 1640 | 3.2 | 970 | 40.3 | 8836 | 490 | 180 | MIXED |
| ATSF | 3-4 | 14400 | 37 | 30 | 69 | 60 | 4462 | 1640 | 3.2 | 634 | 44.9 | 3264 | 867 | 319 | MIXED |
| AVg |  | 13200 | 0 | 41 | 60 | 79 | 3777 | 1102 | 3.5 | 850 | 43.4 | 6772 | 472 | 137 |  |

[^0]SUMMARY OF POBL CONSUMPTIOR RUAS

| $\begin{aligned} & \mathrm{RUN} \\ & \text { CODE } \end{aligned}$ |  | Cars |  | $\begin{gathered} \text { CONSIST } \\ \text { TYPE } \end{gathered}$ | GR TRtous | $\begin{aligned} & \text { HP/ } \\ & \text { TOM } \end{aligned}$ | DIST <br> (HI) | ROUTE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | L | E |  |  |  |  | (ORIGIM - DEST.) |
| ICG | 1-1 | 35 | 2 | TOPC | 2575 | 3.3 | 188 | EEM ORLEARS - Jacksor |
| ICG | 1-2 | 50 | 2 | TOPC | 2880 | 2.9 | 216 | Jackson - mempris |
| ICG | 2 | 36 | 2 | TOFC | 2700 | 4.4 | 535 | bemphis - Chicago |
| ICG | 3-1 | 11 | 1 | TOPC | 636 | 12.3 | 290 | Chicago - dugoota |
| ICG | 3-2 | 28 | 1 | TOFC | 1907 | 4.1 | 245 | DUQUOIX - HEMPRIS |
| ICG | 4 | 25 | 1 | TOFC | 1550 | 5.1 | 404 | MEAPHIS - NEG ORLEASS |
| ICG | 5-1 | 25 | 2 | TOPC | 1778 | 4.4 | 188 | MEW ORLEANS - JACRSOR |
| ICG | 5-2 | 44 | 7 | TOPC | 2930 | 2.7 | 216 | JACKSON - MEHPHIS |
| ICG | 6-1 | 15 | 2 | TOFC | 884 | 10.2 | 290 | Chicago - Duguotn |
| ICG | 6-2 | 33 | 1 | TOPC | 2127 | 4.2 | 246 | DOQUOIN - BEMPHIS |
| ICG | 7 | 23 | 4 | TOFC | 1578 | 5.7 | 404 | MEHPHIS - NBH ORLEAYS |
| ICG | 8-1 | 36 | 117 | BOX | 6796 | 1.2 | 489 | CEICAGO - myHPHIS |
| ICG | 8-2 | 36 | 117 | BOX | 5147 | 1.5 | 198 | MEMPHIS - JACKSON |
| ICG | 8-3 | 70 | 55 | BOX | 7224 | 1.1 | 178 | Jackson - NEG ORLEAMS |
| ICG | 9-1 | 16 | 58 | B0X | 3130 | 2.6 | 45 | NEH ORLEAMS - Habsord |
| ICG | 9-2 | 5 | 41 | BOX | 1615 | 4.9 | 52 | Hamhond - HCCOHB |
| ICG | 10 | 47 | 18 | BOX | 5025 | 1.6 | 787 | mCCOME - Chicago |
| ICG | 11 | 67 | 80 | BOX | 9106 | 1.0 | 97 | NEH ORLEANS - HCCCMB |
| ICG | 12 | 79 | 1 | COFC | 5387 | 2.3 | 526 | Council bluffs - citicago |
| ICG | 13 | 63 | 1 | COFC | 4075 | 2.9 | 526 | COUNCIL BLOFFS - CHICAgo |
| ICG | 14-1 | 35 | 56 | MIXED | 4143 | 2.9 | 267 | Chicago - waterloo |
| ICG | 14-2 | 39 | 69 | EOX | 5118 | 2.3 | 99 | Waterloo - Ft. DODge |
| ICG | 14-3 | 37 | 28 | MIXED | 3711 | 3.2 | 136 | PT DOLGE - COONCIL BLOEPS |

trains was not feasible, and gross values are based on car-type weights carried in the ICG information system computer; net weights are estimated as for the Burlington Northern tests. These runs differed from most of the others reported here in that they involve lower speeds and more en-route stops, factors which tend to have opposite effects on fuel usage. Overall, the data show reasonable consistance with the other results, although the scatter is relatively large. The basic results of the tests are presented in Tables 9 (TOFC only) and 10 (all others).

### 2.6 LONG-DISTANCE TESTS (UNION PACIFIC)

Additional fuel consumption data was collected in a cooperative effort with the Union Pacific Railroad. A round trip between North Platte, Nebraska, and Los Angeles was monitored, with a loaded TOFC consist westbound and a COFC train returning. This was a highly powered train, with the locomotive consist comprising one SD-40 and two DD-40's (twin-diesel, 4-axle-truck units), for a total of $16,200 \mathrm{HP}$. The total run, over predominantly mountainous terrain, was 1519 miles (each way), run at speeds often near or exceeding 70 MPH . The data for these trips are presented in Table 11. Indicated average speeds exclude known stops. On the first run a fuel meter malfunction occurred. The fuel figure given in Table 11 is based instead upon fuel delivered at refueling stations, which in other instances has been 1 to 2 percent high. Extrapolation based upon those meters which were working, however, suggests a substantially lower number (approximately 12,200 gallons, as opposed to 13,700 ). High winds were noted during the North Platte - Salt Lake City portion of that run, which would be consistent with higher fuel consumption than found on the eastbound run.

### 2.7 UNIT COAL TRAIN OPERATIONS

In conjunction with another FRA research project, several runs have also been made for unit trains carrying coal, and returning to the mine empty. The Burlington Northern participated in a test covering a round trip from Lincoln, Nebraska, to Metropolis,
hensured foel consumption data
CAR TOTAL INCLUDES TEST CAR，IF PRESENT，AMD CABOCSE
＂GR TR＇$=$＂GROSS TRAILIMGN：WHP／TCN＂$=$＇HORSEPOHRR PER GROSS TRAILIMG TOM＂

| $9^{\circ} 6$ |  | LTE | 6291 | 9＊2E | E6Z | $\dagger^{*} G$ | SI 8 | 6561 | \＃S | ZE | $1 E$ | 0 | 0598 |  | 2AY |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| て＊8 | Eてl | SOE | 2602 | Z＊OE | H0t | $L{ }^{*} S$ | 6E9 | 8LSl | $E$ | LZ | 92 | 0 | 0006 | $L$ | $2 \pm 1$ |
| 9＊し！ | SLl | E6E | OEEL | Z＊Lて | 9 nz | 2＊ | SH6 | Lてして | $\varepsilon 9$ | カ $\boldsymbol{E}$ | EE | 0 | 0006 | 2－9 | ออI |
| 6．9 | HOL | 912 | S8II | B＊カE | 062 | て－O1 | とてわ | ↔88 | 82 | $L$ | 91 | 0 | 0006 | 1－9 | SDI |
| $l^{\circ} \downarrow$ | 991 | $96 E$ | L651 | じした | 912 | $L^{*}$ 2 | OEてし | OE6Z | 28 | 15 | 05 | 0 | OG8L | Z－S | DDI |
| $6 \cdot 8$ | カEL | 9ヶを | $\angle 96$ | $\varepsilon \bullet l \varepsilon$ | 881 | n＊$n$ | 069 | 8LLI | 97 | $L 2$ | 97 | 0 | OG8L | $1-5$ | 221 |
| $S^{-6}$ | でし | してE | 0561 | $\chi^{-8 E}$ | H0\％ | $1^{-5}$ | 989 | OSSI | 9\％ | 92 | SZ | 0 | OS8L | $\dagger$ | DコI |
| $6^{*} 11$ | 621 | ¢¢ | SLOL | $8^{-82}$ | Sカて | $1{ }^{\circ} \mathrm{H}$ | S8L | L06t | 2S | 62 | 82 | 0 | OS8L | Z－E | DJI |
| $8^{\circ} \mathrm{S}$ | L8 | H0Z | 206 | S＊LE | 062 | $\varepsilon * て L$ | OLZ | $9 E 9$ | 81 | 21 | 11 | 0 | OS8L | $1-\varepsilon$ | 2อI |
| E＊6 | 6E1 | 698 | 816E | $9^{\circ} \mathrm{E}$ E | SES | $\dagger \rightarrow$ | O2OL | 00Lて | 89 | $8 \varepsilon$ | LE | 0 | 00021 | 乙 | ODI |
| $1 \cdot 11$ | C91 | 95E | 6ヶLl | $0^{\circ} \mathrm{OE}$ | 912 | $6^{*}$ \％ | OSEI | 0882 | 06 | てS | 15 | 0 | OGヵ8 | 2－1 | DDI |
| 0.01 | OSI | Oで | ESIL | $S^{\bullet}$ LE | 881 | $E * \mathcal{L}$ | Eて6 | SLSZ | 29 | LE | 9 E | 0 | OS\＃8 | l－l | 2DI |
| TV5／ | 山建 | 8山 89 | （IV9） | azadS | （IW） | nOw | 工可 | H山 $\mathbf{d y}^{\text {d }}$ | S¢T84 | TVJOL | X $\mathrm{d}_{\text {d }}$ | XOB |  |  | 02 |
| IM－8J | IVP | IW－NOL | TG0d | －DAY | LSIU | ／dн | JH | I里 | do 4 A | S甘せD | a | 8N | d ${ }^{\text {H }}$ |  | ＠8 |

[^1]measured furl consumption data
CONSIST TYPE: ALL
TOn:

 ..... $\frac{1}{6}$
HP/ DIST AVG.
-
$\stackrel{N}{N}$


MEASURED FIEI CCNSUNFTICN DATA
TABLE 11. UNION PACIFIC FUEL CONSUMPTION MEASUREMENTS


Illinois, a distance of 704 miles. The power consist of four SD-40-2's provided $12,000 \mathrm{HP}$. The loaded movement involved a power-weight ratio near unity, and speeds in the vicinity of 20 MPH. A similar operation on the Boston $\&$ Maine Railroad, between Mechanicville, New York, and Bow, New Hampshire, ( 207 miles) yielded similar data. In that case, six GP-38's were used, also providing $12,000 \mathrm{HP}$. The results for both railroads are presented in Table 12. As in previous tables, the average speeds exclude known stops. The substantially greater fuel efficiency of the BN runs, compared to those for the $B \in M$, may partially be related to the considerably more uneven terrain for the latter case, and the substantial net vertical drop (approximately 700 feet) for the $B N$ in the loaded direction. In addition, one would anticipate a substantial variation associated with pattern of stops, different train handiing practices for the different topography, etc.

### 2.8 SUMMARY OF INTERMODAL RESULTS

A11 TOFC runs described above are summarized in Table 13 , and the two COFC cases are presented in Table 14. While these tests are not truly comparable to one another, due to differences between consists, terrain, speeds, etc., they provide a reasonably consistent pattern with respect to fuel usage for TOFC service. The overall TOFC average of 10.9 trailer-miles per gallon is relatively uniform from railroad to railroad, although substantial variations do occur, particularly as a function of power/weight and percentage of empties. The maximum value (for loaded trailers) is 16.5 , and the minimum (excluding one $12.3 \mathrm{HP} /$ ton case) is 6.6 .

The COFC data are rather limited, but do fall within the range that would be expected. The data are inadequate to provide rigorous substantiation of the expected fuel efficiency advantage over TOFC, but consistent results are observed. If one ignores those runs characterized by power-to-weight ratios of greater than $4 \mathrm{HP} /$ ton (COFC operations were at 2 to $3 \mathrm{HP} /$ ton) , the COFC shows 46 percent greater efficiency in terms of container-miles gallon, and 40 percent for gross trailing ton miles per gallon. (Inclusion of all ICG TOFC runs gives 56 percent and 65 percent,

TABLE 12．UNIT COAL TRAIN FUEL CONSUMPTION MEASUREMENTS（BURLINGTON NORTHERN AND BOSTON $\&$
MAINE）
MEASUGED FUEI CCNSUKFIICN DATA
CONSISITYEE: BII
CAB TCTAL INCLELES TEST CAR.
CONSISI TYRE: BII
CAR TCTAL INCLLLES TEST CAR, IF PFESENT, AND CAECCSE
"GR TF" = "GFOSS TRAIIING"; "HP/TCN" = "HCRSEECNFFPEF GRCSS TBAIIING TON"
2587
$8 こ 31$
$\$ 588$
8629
9352
(179)
7308



WEIGFT

5078



AVG. (CNWEIGHTEL) GFCSS TCN-MI/GAI (INCL. LOCC.) IS 728 WITH STE LEVIATICA OF 441.5
CON
COL
SIIOIOATER - RIJJNII
HJ甘- IIIIAכIRYRコI
IIIIAJIM甘

CAB TCTAL TNCLULES TEST CAR，TP PFESENT，AND CAECCSE
＂GR TE＂$=$＂GFOSS TRAILING＂；＂HP／TCN＂$=$＂HCRSEFOWEGPEG GBCSS TBAIITGG TOM＂
\＃


会昜


密云

z盀云
$E N$
$E N$
$E N$

## EN EN EN EN

EN
EN
EN
EN

ror0－00000－rorr－000000000000000000000000000000
上






rotals： 46 gua segments， 34136 miles

[^2]TABLE 14.

respectively). However, different routes were involved, so this comparison must be used with great caution.

The relationship of net ton-miles to the gross ton-mile and trailer-mile figures used here remains somewhat uncertain, since there may be a substantial difference among trailer and container load weights. This element, coupled with uncertainties previously stated, emphasizes the importance of utilizing these numbers only as indicators, rather than as proof of a specific COFC fuel efficiency advantage over TOFC. Further, any generalization to overall transportation efficiency would require inclusion of effects of empty backhauls, typical loads, and terminal and pick-up/delivery energy usage.

### 2.9 COMPARISON WITH COMPUTER SIMULATIONS

Direct comparison of experimental data and computer simulations is generally a more challenging task than might at first appear to be the case. The acquisition of detailed track data (curvature, speed limits, and elevations or grades) is a problem which plagues all researchers in this field. Data is often available only in the form of track charts, thus requiring very labor intensive and tedious manual interpretation. Even computer-readable data assembled by others often proves to contain errors, "adjustments", or forms of presentation which entail much correction or re-interpretation. Further, the speed limits obtained thereby do not include slow orders or other temporary delays which may affect an actual train movement, nor can they include stops occasioned by congestion or setting out of bad-order cars. The detailed information provided to TSC by several railroads in this series of tests does permit reconstruction of the actual speed profile, but this, too, is very time consuming.

For these and other reasons, serious attempts at simulation of these runs has begun only recently at TSC. The simulations which have been carried out to date are, for the most part, based on rough approximations to the actual speed profiles, and must be considered to be very preliminary in nature. However, they do show fairly good agreement with experiment, generally differing
by no more than 5 percent to 10 percent in running time and fuel consumption. Some cases are quite close, while a few deviate markedly, for reasons not yet ascertained. Results in this area should be viewed in terms of the many factors identified elsewhere in this paper which bear upon the accuracy of the experimental figures, including such variables as the energy content of the particular fuel used, temperature, and barometric pressure, as well as locomotive variations. Other considerations not readily simulated include details of train-handling techniques, such as application of power and brakes simultaneously in order to maintain the train in a stretched condition.

In spite of such uncertainties and the constant presence of uncontrolled and possibly unknowable variables, the initial and preliminary results that have been obtained in the FRA/TSC studies suggest that computer calculations for a fully calibrated and validated model can yield results with an uncertainty of less than 5 percent for a wide variety of cases when train resistance equations have been sufficiently refined, with even better results in the more precisely defined situations.

## 3. SUMMARY AND CONCLUSIONS

The tests described here represent 53,000 train-miles of operations under a wide variety of conditions. Summary values of average gross trailing-ton-miles per gallon and miles of testing are shown in Table 15. (The "mixed" category involved such disparate consists and operations that a breakdown by railroad is not judged to be meaningful.) The many differences among the various test runs generally prec1ude meaningful comparison among these numbers, which are presented merely to indicate trends and representative values. For example, the ATSF boxcar trains were operated at relatively high speeds over mountainous terrain with a high power-to-weight ratio; the case was completely different for the Southern Pacific boxcar operation, and intermediate for the ICG. The resulting fuel usage is consistent with these differences. The relevance of the data in Table 15 to a particular purpose or interrpretation must be judged in terms of the detailed test descriptions presented in the body of this report. The 34,100 miles of TOFC operations yielded a mileage-weighted average of 10.9 trailer-miles per gallon. The relatively small number of COFC runs monitored suggest a fuel efficiency approximately 45 percent greater than for TOFC, although this finding should not be considered definitive. The scatter in the data typically showed a standard deviation equivalent to approximately 20 percent of these values, which is not unreasonable considering the variety of operations examined (particularly in speed and terrain) and the uncertainty in train weights in some cases. The limited relationship between running speed and overall averages and the narrow speed range covered by most of the tests do not permit identification of the energy intensiveness as a function of velocity. However, more detailed analysis of the ATSF data should make possible meaningful conclusions in this area.

Generalization to a more specific measure of effective transportation fuel efficiency, net ton-miles per gallon, is difficult, since lading density, car loading, and percentage of empty cars

TABLE 15. SUMMARY OF FUEL CONSUMPTION MEASUREMENTS
(Gross Trailing-Ton-Miles per Gallon/Miles of Testing) Overall Average is mileage-wetghted. Unit coal train data is presented in Table 12.

| RAILROAD | BOX | TOFC | COFC | MIXED |
| :--- | :---: | :---: | :---: | :---: |
| BN | - | $433 / 20450$ | - | - |
| SP | $959 / 1148$ | $599 / 574$ | - | - |
| ATSF | $493 / 1747$ | $439 / 6852$ | - | - |
| ICG | $699 / 1945$ | $347 / 3222$ | $544 / 1052$ | - |
| UP | - | $328 / 3038$ | - |  |
|  |  |  |  |  |
| ALL | $678 / 4840$ | $415 / 34136$ | $544 / 1052$ | $471 / 10878$ |

can vary substantially. For the purpose of crude approximation, it can be noted that the ratio of car capacity (not necessarily load weight) to empty weight is typically in the range of 2 to 3 for freight cars, but is less than unity for TOFC service. At higher speeds, for which aerodynamic rather than weight sensitive energy dissipation begins to dominate, the effect of weight is less limited. Naturally, percentage of loaded and empty cars must be considered as well. (The overall national average ratio of net-to-gross train weight is approximately.4.) The marked effects of power-to-weight ratio are significantly reduced if one makes calculations in terms of gross rather than trailing weight, since locomotive weight is a principal reason for greater fuel usage at higher HP/ton.

These results are not in serious disagreement with most previous estimates. Close examination generally shows the expected varation with power/weight, train weight, and speed, and illustrates the range of fuel efficiency values which can occur. The various tests show a reasonable consistancy from railroad-torailroad and for very different locations. Full analysis of these tests should provide a firm foundation for estimation of rail freight transportation fuel usage under a wide range of operating scenarios. The train movements which comprised these tests are now being simulated on the $T S C$ train performance computer program, and it is anticipated that this process will contribute to selection of train resistance equations and other algorithms which will be valid and accurate for a wide range of cases. At the same time, the many pitfalls in this area must be kept clearly in mind. Variations in locomotive and track conditions, train-handiing policies, details of route and speed profile, train consists, empty/loaded ratio, weather, etc., can all render simulations or "rule-of-thumb" estimates seriously in error. The numbers which have been mentioned here represent findings for specific cases, and generalization must be approached with great care.


[^0]:    AVG. TON-MI/GAL = TOTAL TON-MI/TOTAL GALLONS
    OTHER AVBRAGES NOT WBIGHTED

[^1]:    AVG．TOR－MI／GAL＝TOTAL TON－MI／TOTAL GALLONS：SAME FOR TR－MI／GAL

[^2]:    

